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ABSTRACT 

A general procedure based on a new substructuring technique, the 
flexible volume method, is applied to the solution of foundation 
vibration problems. The procedure is capable of handling foundations 
with complex geometries, and multiple flexible foundations of 
arbitrary shape founded on the surface of, or embedded in, layered 
viscoelastic soils and subjected to harmonic or transient loadings. 
The methodology is implemented in a system of computer programs called 
SASSI. The procedures for computing the necessary three-dimensional 
impedance matrices and the overall response are summarized. To 
demonstrate the effectiveness and accuracy of this method, SASSI is 
used to evaluate the dynamic response (compliance functions) of a 
rigid circular disk founded on the surface of a soil layer resting on 
rigid base rock. The results compare favorably with more rigorous 
continuum solutions. These results are also compared with the 
response of circular f~otings on a damped halfspace to show the 
effects of a fixed base on foundation response. To demonstrate the 
applicability of the procedure to practical problems, results are 
presented of a three-dimensional aircraft impact analysis on an 
embedded tunnel. 

INTRODUCTION 

The design of foundations for vibrating machines and foundations 
subject to other dynamic forces requires an accurate prediction of the 
foundation response to these loads. A complete and rigorous analysis 
must account for the following: the three-dimensional nature of the 
problem, foundation flexibility, material and radiation damping of 
soil, variation of soil properties with depth, embedment effects, and 
interaction effects between multiple foundations through the soil. 

Several substructuring methods for vibration analysis of foundations 
are presented in the literature. The basic approach in all these 
methods is to partition the complete soil-structure system into two 
parts - - the structure and the soil. The soil medium is analyzed 
first and the impedance properties (dynamic stiffnesses) at the 
foundation-soil interface are estab,lished. In the second step, these 
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impedances are incorporated with the equations of motion of the 
structural system, and the overall response is computed using standard 
dynamic analysis procedures. For the case of foundations founded at 
the surface of a homogeneous halfspace, the substructuring procedures 
are ·simple and economical since the impedance functions can be readily 
obtained directly from rigorous continuum solutions. However, in most 
cases, the solution to the impedance problem is not known a priori and 
must be obtained by performing a separate analysis, e.g., by the 
finite element method. Furthermore, the solution of a complicated 
impedance problem makes the substructuring methods less attractive as 
compared to the complete finite element methods. 

In this paper, a general procedure based on a new substructuring 
method, the flexible volume method [Tabatabaie (6)], is applied to the 
solution of foundation vibration problems. The procedure allows 
vibration analysis to be performed on foundations with complex 
geometries. It is possible to compute the response of multiple 
flexible foundations of arbitrary shapes founded on the surface of, or 
embedded in, layered viscoelastic soils and subjected to harmonic or 
transient loadings. The actual foundation rigidity can also be 
modeled. 

The methodology differs from other substructuring techniques in the 
manner in which the stiffness and the mass matrices of the foundation 
are partitioned from those of the soil. The complete soil-foundation 
system is divided into two substructures, the soil and the 
foundation. The foundation is modeled by standard finite element·s, 
and the interaction is assumed to occur over the embedded volume 
rather than at the boundary, i.e., at all foundation nodes below 
grade. The mass and stiffness of the foundation are reduced by the 
corresponding properties of the volume of soil excavated, but are 
retained within the halfspace. Thus, the impedance problem is reduced 
to a series of axisymmetric solutions of the response of·a layered 
site to point loads [Tajirian (7)]. The above methodology is 
implemented in a system of interrelated computer program modules 
called SASSI (5). 

The flexible volume method and the procedures for computing the 
necessary three-dimensional impedance matrices and the overall 
response are summarized below. To demonstrate the effectiveness and 
accuracy of this method, SASSI is u·sed to evaluate the dynamic 
response (compliance functions) of a rigid circular disk founded on 
the surface of a soil layer resting on rigid-base rock. The results 
are compared with the more rigorous continuum solutions obtained using 
the computer program LUCON {4). 

METHODOLOGY FOR GENERAL THREE-DIMENSIONAL FOUNDATION VIBRATION 
ANALYSIS 

.. 
Formulation of the Flexible Volume Method 

The detailed formulation of the flexible volume method for 
soil-structure systems is given in References (6) and (7). 
formulation below applies to forced vibration analysis of 
foundations. The system is solved in the frequency domain 

analysis of 
The 

using the 
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complex response method. Material damping is accounted for by using 
complex material moduli. Transient loadings are decomposed by Fast 
Fourier Transform techniques. 

Fig. 1 represents a complete plane-strain soil-structure system 
discretized by finite elements. The foundation of this system is 
truncated at some far distance from the structure, and the effect of 
the remaining halfspace is accounted for by introducing a set of 
forces ~b which act on the external boundary of the model. (The 
selected model is chosen for explicitness only and the method is not 
limited to plane-strain models nor to discretized foundatiops.) 

A' 

/ 
~g 

' (a) TOTAl SYSTEM (b) FOUNDATION 

~ 

' 

b STRUCTURE 
MINUS 

EXCAVATED SOIL 

(c) STRUCTURE 

Figure 1. Substructuring of Interaction Model 

The complete soil-structure system, Fig. la, is partitioned into two 
substructures, the foundation (Fig. lb) and the structure (Fig. lc). 
The mass and stiffness of the structure is reduced by the 
corresponding properties of the volume of soil excavated, but it is 
retained within the halfspace. Furthermore, the interaction is 
assumed to occur over a volume, i.e., at all basement nodes. 

Using the complex response method, the discretized equation of motion 
for the complete system in Figure la can be formulated. This equation 
in the frequency domain can be written as: 

c* u* = ~ ( 1) 

where u* and ~ are the vectors of complex nodal point 
displa~ements and force amplitudes respectively and c* is the 
complex frequency- dependent stiffness matrix, which-can be written as 

c* = K* (2) 
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M and K* are the total mass and complex stiffness matrices of the 
system~ respectively, and are assembled using standard finite element 
techniques. In the above equations, the superscript "*" denotes a 
complex term. In the following derivation, this superscript is 
omitted with the understanding that all stiffness terms, 
displacements, and forces are complex, unless otherwise stated. 

Similar equations of motion can be written for each of the 
substructures in Fig. 1. The following subscripts are introduced to 
refer to the degrees of freedom (DOF) associated with different nodes: 

Subscript 
s 

i 

f 

b 

g 

Node 
superstructure 

basement 

excavated soil 

external boundary 

remaining soil 

The equation of motion for the soil (substructure 1) can be written as 

E.ff E.fg 

E.g£ E.gg 

fbf .£bg 

= (3) 

where gf are the interaction forces from the structure. Similarly, 
the equation of motion for the structure (substructure 2) can be 
written 

[ 

E.ss 

£is {
Qs} {!s} 
Qi = !i+gi 

(4) 

where !s and !i are the amplitudes of the external forces at the 
superstructure and basement nodes, respectively. Compatibility of 
displacements and equilibrium of forces at the soil-structure 
interface require the following conditions: 

Qi = Qf (5) 

gi + gf = Q (6) 

By substituting Eq. (6) into (4), we obtain 

·[ .fss 
.£is { ~}- { (7) 

The term (.£ii-.£ff) simply indicates the stated partitioning 
according to which the stiffness and mass of the excavated soil are 
subtracted from the stiffness of the structure. 
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If any existing rock boundary is at rest and the truncated external 
boundary is selected infinitely far from the loaded foundation, we can 
assume that 

.!lli = 0 (8) 

By substituting Eq. (8) into (3) and partitioning, we obtain: 

£fg 

£gg 

£1,g 

.ffb 

= 

9.f 

0 (9) 

0 

According to the above partitioning ~ and Qb can be eliminated 
and the relationship between ~f and 9.f can be expressed in the form 

.Qf = (10) 

!f is a frequency-dependent matrix which represents the dynamic 
stiffness of the foundation soil a~ the interaction nodes. !f will 
be referred to as the impedance matrix. An effective method for 
determining this matrix without using the large matrix in Eq. 9 is 
described in the next section. 

Substitutions of Eqs. (10), (5), and (6) into Eq. (7) results in 

[ 
£ss £si ] { !!.s} { !s} 
C· (C· ·-CJ:f+Xf) · U· = F· 
-1 s -11 ~ - -1 -1 

(11) 

According to this formulation, the solution of the foundation 
vibration problem reduces to two steps (for each frequency): 

1. Solve the impedance problem, Eq. 10, to determine the matrix 
!f· 

2. Solve the structural problem, Eq. 11. This involves forming 
the complex stiffness matrices and load vector and solving Eq. 
11 for the final displacements using standard equation solvers. 

Formulation of the Impedance Matrix 

According to the definition of flexibility and stiffness matrices, the 
impedance (dynamic stiffness) matrix, !f• for the interaction 
degrees of freedom can be determined as the inverse of the dynamic 
flexibility matrix, ff• i.e., 

(12) 

!f is a full symmetric complex matrix. An efficient in-place 
inversion subroutine (8) is currently used for such operation. This 
method is called the "direct method" for computing the impedance 
matrix. Other efficient methods for computing the impedance matrix 
have been developed (6) and (8). These include procedures for 
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computing the impedance matrices of symmetric and antisymmetric 
systems. 

Formulation of the Flexibility Matrix 

Procedures for determining the flexibility matrix for three-dimen­
sional systems are described by Tajirian (7). The basic problem in 
determining the dynamic flexibility matrix is to find the response of 
a layered halfspace to a harmonic point load. Each column of the 
flexibility matrix is formed by applying a unit point load at the 
interaction degree-of-feeedom associated with that column a~d by 
computing the resulting displacements at all the interaction nodes. 

For layered sites, these displacements can be obtained from the 
axisymmetric model shown in Fig. 2. This model consists of a central 
core of special cylindrical axisymmetric finite elements connected at 
the perimeter to a semi-infinite layered zone which is represented by 
axisymmetric transmitting boundaries (3) and (10). Either the lower 
boundary can be fixed or a halfspace can be simulated by using the 
variable depth and viscous boundary ~ethods (1), (6) and (7) • 

• * ,'I 
,' I 

,' ... 
liS.' I 
, I 

• I 

SUILAYERS ~--

EMBEDMENT 

ADDITIONAL 
SOIL LAYERS 

SIMULATED 
HALFSPACE 

Figure 2. Axisymmetric Model for Impedance Analysis 

From this model displacement amplitudes can be obtained both at the 
central nodes and at any point outside the cylindrical elements, i.e., 
at all interaction nodes. These displacements which are computed in a 
cylindrical coordinate system are transformed to the global cartesian 
coordinate system using standard transformation procedures. 
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CASE STUDIES 

Case Study 1: Compliance Functions For Circular Disk 
on a Layer Overlying a Rigid Base 

In this section, the accuracy of the above methodology is tested by 
comparing SASSI results with known solutions for the problem of forced 
vibration of rigid foundations on viscoelastic layered media. 

Compliance functions for a rigid circular disk on a uniform layer of 
finite thickness overlying a horizontal rigid base were obtained using 
the computer program LUCON (4). This program uses a special 
formulation of the field problem in terms of Green's functions and can 
handle a layered viscoelastic halfspace. 

The same problem was solved using SASSI. Fig. 3 shows the geometry, 
the material properties, and the finite element mesh used in the SASSI 
analysis. Because the results of the analysis are presented in terms 
of the dimensionless frequency ratio A0 = wr/Vs, the parametersvof 
the problem can be selected arbitrarily as long as the frequencies of 
analysis, w , are adjusted accordingly to cover the presented range 
of A

0
• · 

RIGID MASSLESS 

v,. 1 

v, •2 

p •I 
13 • i,15% 

RIGID lASE ROCK 

Figure 3. SASSI Model for Computing Compliance Functions 
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The compliance functions for 5 and 15 percent layer damping obtained 
using the SASSI procedure are compared with comparable LUCON results. 
These results are also presented along with damped halfspace solutions 
(9) to investigate the effectiveness of the model consisting of a 
finite layer on a rigid base rock (Fig. 3) in simulating halfspace 
conditions. Figs. 4 and 5 show the vertical compliance functions for 
5% and 15% damping, respectively. Excellent agreement exists between 
SASSI and LUCON results except for the real part of the 5% complianc~ 
at A0 values of less than 0.2. Considerable deviation of the, · 
results from halfspace solution can be seen especially near the peaks 
corresponding to vertical natural frequencies of the system. These 
frequencies can be obtained from 

Fvnf = (2n-l) Vp/(4H) , n=l,2,3 ••• 

For the present problem (V = 2, H = 3), F f = 0.166, 0.500, 0.833, ••• 
p vn 

and thus: A f = 0.524, 1.571, 2.618, ••• vn 

However, the results seem to be le~s sensitive to occurrence of the 
peaks at higher modes especially when the damping is high. In 
general, the vertical compliance of the model shown in Fig. 3 poorly 
represents the damped halfspace results at A0 less than 1.5. 

Comparisons of horizontal compliance functions are shown in Figs. 6 
and 7. Both methods yield essentially the same results. The 
rigid-base results tend to better match the halfspace results for the 
horizontal case than for the vertical case. This is in part due to 
the fact that the peaks corresponding to the horizontal natural 
frequencies of the layer on rigid base start from much lower 
frequencies. 

Fhnf = (2n-l) Vs/(4H) n=l,2,3 •••• 

thus for Vs = 1, H = 3, we obtain Fhnf = 0.083, 0.250, 0.417, ••• 

and ~nf = 0.262, 0.785, 1.309, ••• 

Comparison of the results for rocking and torsional cases for 5 and 15 
percent damping, as shown in Figs. 8 through 11, indicate very good 
agreement between SASSI and LUCON results. Furthermore, it appears 
that the rocking and torsional compliance functions obtained from the 
model shown in Fig. 3 can be used to represent those of the damped 
halfspace case with good accuracy. This is in agreement with the 
findings of other investigators who have shown that the compliance 
functions for rotational sources are not influenced by the presence of 
a rigid base when the depth to the base is greater than three times 
the foundation radius (3). This is due to the destructive 
interference of waves emanating from the footing-soil interface which 
limit the effective depth of penetration of the generated waves. 
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Case Study 2: Three-Dimensional Analysis of Airplane Impact on an 
Underground Cable Tunnel and Protective Slab 

The second case study is a three-dimensional analysis of an underground 
cable tunnel. The response of the tunnel to an aircraft impact on a 
protective slab at grade is computed. 

The tunnel which runs between a reactor and control building at a nuclear 
power plant is shown in Figs. 12 and 13. The tunnel has a height of · 
about 15 ft and is 35.8 ft wide. It is designed with a protective slab 
about 3 ft thick at the ground level and with an intermediate layer of 
earth about 3.25 ft thick. To prevent impact on the sides,of the tunnel, 
the protective slab is wider than the tunnel. The thickness of the 
protective slab is designed to prevent perforation in the direct loading 
area where an airplane might impact. Thus, the protective slab and the 
tunnel have to be designed to withstand stresses during the 
time-dependent loading shown in Fig. 14. 

CONTROL BUILDING 

SASSI MODEL 

REACTOR BUILDING 

Figure 12. Plan View of Tunnel 
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The soils around the tunnel consist of about 16 ft of sand underlain 
successively by 20 ft of sand and gravel and a deep bed of firm soils 
(Fig. 13). 

A standard German aircraft crash loading was used as input. The 
loading was assumed to act vertically at the center of the protective 
slab and was distributed over an area of 75 ft2. The maximum . 
amplitude of the load was 24,192 kips. In the analysis, one quarter 
of the total load was distributed on the symmetric model of the 
prototype slab (Fig. 15). 

Figure 15. Input Load Distribution 

The first 0.16 seconds of the load digitized at 0.005 seconds was 
used. The record consisted of 2048 points. The maximum frequency 
considered was 22 Hz. The filtered time history is compared with the 
original loading (Fig. 14). 

The soil profile used in the SASSI analysis is shown in Fig. 16. 
Layer thicknesses were chosen to be less than one fifth of the shear 
wave length at the cutoff frequency of 22Hz; i.e., allowable 
thickness Vs/(5*22). The underlying halfspace (firmsoil) was 
simulated using 20 sublayers whose thicknesses vary with frequency 
attached to viscous dashpots. 
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Figure 16. SASSI Model 

The three-dimensional structural finite element model used in the 
SASSI analysis is shown in Fig. 17. Since advantage could be taken of 
symmetry about two vertical planes, only one quarter of the tunnel 
section was analyzed. Furthermore, it was assumed that the effects of 
impact on the tunnel and protective slab were minor at a distance of 
about 24 ft from the center of the loaded area. The protective slab 
and tunnel walls were modeled by special solid-brick elements which 
behave well in bending. The total model consists of 104 nodes, 45 
structural elements, and 51 excavated soil elements. 

Maximum vertical displacements were computed in the tunnel and the 
protective slab. The largest displacement was 0.63 in., at the center 
of the protective slab. The displacements in the tunnel below the 
loaded area did not exceed 0.07 in. Furthermore, at points away from 
the center of the loaded area the effect of impact was significantly 
reduced. 

Vertical time histories at the center of the protective slab (node 4) 
and at the bottom of the tunnel (node 96) were compared. Such 
comparisons for displacements are shown in Fig. 18, and for 
accelerations in Fig. 19. As may be seen from these results the 
protective slab significantly reduced the motions in the tunnel. 
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Vertical acceleration r~sponse spectra are shown in Fig. 20 (Node 4) 
and Fig. 21 (Node 96). The results indicate a peak in the response 
around the cutoff frequency (22Hz). Thus, it may be necessary to 
repeat the entire analysis using a finer model which satisfied a 
higher frequency cutoff. 
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Figure 20. Absolute Vertical Acceleration Response Spectrum at Node 4 
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Comparisons of maximum velocities and accelerations at the same nodes 
are shown below. Again, the protective slab significantly reduced the 
motions in the tunnel. 

Maximum vertical 
displacement (ft) 

Maximum vertical 
velocity (ft/sec) 

Maximum vertical 
acceleration (g) 

SUMMARY AND CONCLUSIONS 

Node 4 

o. 053 

2.80 

7.2 

Node 96 

o. 004 

0.33 

0.95 

The flexible volume method was applied to the solution of general 
three-dimensional foundation vibration problems. The formulation can 
handle multiple flexible foundations with arbitrary shapes founded on 
the surface of, or embedded in, layered viscoelastic soils. Responses 
computed using this method compared favorably with more rigorous 
continuum solutions, demonstrating its accuracy. To illustrate the 
applicability of the procedure to more practical problems, the results 
of a three-dimensional analysis of an aircraft impact on a buried 
tunnel were presented. 
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