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ABSTRACT 
Dynamic soil-structure interaction (SSI) analysis of 

nuclear power plants is often performed in frequency domain 
using programs such as SASSI [1].  This enables the analyst to 
properly a) address the effects of wave radiation in an 
unbounded soil media, b) incorporate strain-compatible soil 
shear modulus and damping properties and c) specify input 
motion in the free field using the de-convolution method and/or 
spatially variable ground motions. For structures that exhibit 
nonlinearities such as potential base sliding and/or uplift, the 
frequency-domain procedure is not applicable as it is limited to 
linear systems. For such problems, it is necessary to solve the 
problem in the time domain using the direct integration method 
in programs such as ADINA [2].  The authors recently 
introduced a sub-structuring technique called distributed 
parameter foundation impedance (DPFI) model that allows the 
structure to be partitioned from the total SSI system and 
analyzed in the time domain while the foundation soil is 
modeled using the frequency-domain procedure [3]. This 
procedure has been validated for linear systems. 

In this paper we have expanded the DPFI model to 
incorporate nonlinearities at the soil/structure interface by 
introducing nonlinear shear and normal springs arranged in 
series between the DPFI and structure model.  This 
combination of the linear far-field impedance (DPFI) plus 
nonlinear near-field soil springs allows the foundation sliding 
and/or uplift behavior be analyzed in time domain while 
maintaining the frequency-dependent stiffness and radiation 
damping nature of the far-field foundation impedance.  To 
check the accuracy of this procedure, a typical NPP foundation 
mat supported at the surface of a layered soil system and 
subjected to harmonic forced vibration was first analyzed in the 

frequency domain using SASSI to calculate the target linear 
response and derive a linear, far-field DPFI model. The target 
linear solution was then used to validate two linear time-
domain ADINA models: Model 1 consisting of the mat 
foundation+DPFI derived from the linear SASSI model and 
Model 2 consisting of the total SSI system (mat foundation plus 
a soil block).  After linear alignment, the nonlinear springs 
were added to both ADINA models and re-analyzed in time 
domain. Model 2 provided the target nonlinear solution while 
Model 1 provided the results using the DPFI+nonlinear springs. 
By increasing the amplitude of the vibration load, different 
levels of foundation sliding were simulated.  Good agreement 
between the results of two models in terms of the displacement 
response of the mat and cyclic force-displacement behavior of 
the springs validates the accuracy of the procedure presented 
herein. 

INTRODUCTION 
A simplified procedure for implementing distributed linear 

foundation impedance parameters in time domain analyses 
using ADINA “direct integration method” was previously 
presented [3]. The method involved: 1) calculating the 
foundation dynamic impedance at each soil/mat interaction 
node from soil reaction forces and interaction displacements in 
frequency domain using SASSI, 2) developing equivalent 
simple damped oscillators with constant parameters (spring, 
mass and dashpot) representing the frequency-dependent 
dynamic impedance, and 3) implementing the results in time 
domain analyses using ADINA with consistent foundation mass 
matrix.  The accuracy of the above procedure for rigid and 
flexible mat foundations supported at ground surface was 
demonstrated by comparing the response of a two lumped mass 
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parameter-foundation analyzed by SASSI and ADINA in 
frequency and time domain, respectively. 

The above procedure was shown to be effective in 
modeling linear foundation response, which primarily accounts 
for the far-field foundation stiffness and radiation damping.  In 
addition to the linear far-field response, the foundation soils 
may undergo significant nonlinear behavior in the near-field of 
the structure caused by the inertial feedback of the structure 
into the foundation. Such effects were not included in the 
procedure described above. 

In the following, the above procedure is expanded to 
include distributed nonlinear springs to account for soil 
nonlinearity in the near-field of the structure. The accuracy of 
the new procedure using DPFI model is verified through a test 
problem. 

METHODOLOGY 
Let’s consider the problem of one-dimensional wave 

propagation in a semi-infinite soil column with uniform 
properties (elastic modulus, G, and mass density, ρ), as shown 
in Fig. 1.  The column is subjected to a periodic motion, U0(t) = 
f(-vt) at the surface, where v and t are the velocity of this 
particular wave type and time, respectively. Because the waves 
travel in one direction only (with no reflections), the 
displacement response at any point may be written as follows: 

 
U(x,t) = f(x - vt)                                       (1) 

 
The particle velocity, U’, strain, ε, and stress, σ, at any 

point along the soil column may be obtained from Equations 2, 
3 and 4, respectively. 

 
 U’(x,t) = df/dt = -v f’(x-vt)                        (2) 
 
 ε(x,t) =  df/dx = f’(x – vt)                         (3) 
 
 σ(x,t) = G ε(x,t) = G f’(x – vt)                   (4) 
 

The boundary forces at the surface (x=0) may be then 
obtained from the stresses in Eq. 4, as shown below: 

 
P0 (t) = - σ(0,t) . A = - G A f’(-vt)              (5) 

 
By substituting v = √G/ρ and the particle velocity from Eq. 

2 into Eq. 5, we obtain: 
 

P0(t) = (√ρG) A U’0(t)                                (6) 
 
As seen from Eq. 6, the forces at the surface are 

proportional to the velocity rather than displacement. 
Therefore, the entire semi-infinite soil column may be replaced 
by viscous dashpots having C = √ρG per unit area, as shown in 
Fig. 1(b).  These dashpots represent the effects of linear far-
field zone. 
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Fig 1 - Simulation of 1-D Wave Propagation in a Semi-

Infinite Soil Column 
 

Now let’s consider a one-dimensional wave propagation 
problem with two different material types, as shown in Fig. 
2(a). The upper portion consists of a nonlinear material while 
the lower portion (which continues to great depths) consists of 
linear elastic material. The solution to this problem can be 
readily obtained by replacing the entire soil column with a 
spring and a dashpot in series, as shown in Fig. 2(b). The 
dashpot represents the lower semi-infinite soil column (far 
field) while the spring represents the upper nonlinear soil 
column (near field).  In this model the near-field soil mass is 
ignored. It is noted that the dashpot properties in this case are 
controlled only by the far-field soil column and are not affected 
by the properties of the upper soil column, as shown in Fig. 2. 
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Fig 2 - Simulation of 1-D Wave Propagation in a Semi-
Infinite Soil Column with Two Material Types  

 
The above discussion sets the stage for representation of 

the near-field and far-field foundation impedances in terms of 
springs and dashpots arranged in series. This representation, as 
shown in Fig. 2(b), is exact for one-dimensional wave 
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propagation problem. However, in the case of two- and three-
dimensional foundation vibration problems, the break up of the 
near-field and far-field foundation impedances in terms of 
springs and dashpots is more complex. This is mainly due to 
the fact that the far-field impedance parameters, in general, are 
not uniform and are controlled by the foundation configuration 
and properties as well as soil properties, as opposed to 
depending on far-field soil column only as in the case of one-
dimensional wave propagation.  In the following we will 
present a simplified procedure for developing nonlinear near-
field impedance model in conjunction with distributed linear 
far-field impedance model for use in time domain analysis. 

According to the theory of plasticity, the nonlinear 
foundation deformations may be decomposed into elastic and 
plastic components, as shown in Eq. 7 (see Fig. 3). 

 
U = Ue + Up                                              (7)  

 
Where U is the total displacement; and Ue and Up are the 

elastic and plastic displacement components, respectively. 
Assuming that the plastic deformations only occur in a small 
zone below the foundation mat, Eq. 7 may be represented by a 
linear far-field oscillator acting on the elastic component of 
displacements and a nonlinear near-field spring acting on the 
plastic component of displacements, as shown in Fig. 4. 

 

UpU = Ue + Up Ue

P

= +

P P

UpU = Ue + Up Ue

P

= +

P P

 
Fig 3 - Decomposition of Near-Field Displacements 

into Elastic and Plastic Components 
 
When the forces acting on the nonlinear springs are lower 

than yield forces, Py, the foundation mat is fully bonded to the 
soil (i.e. no plastic deformations) and the only deformations are 
those provided by the linear oscillator representing the far-field 
impedance. As spring forces exceed the yield forces, plastic 
deformations start to develop, as provided by the near-field 
nonlinear spring, and are added on top of the elastic 
deformations provided by the far-field impedance. At the 
ultimate load, Pu, the foundation forces distributed to the far-
field impedance remain constant while the footing goes through 
plastic displacements.  It is assumed that during plastic 
deformations, the linear far-field foundation impedances 
remain constant. 

It is also noted that when near-field spring forces are lower 
than the yield forces, the far-field dashpots representing the 
foundation radiation damping are fully engaged. When these 
forces exceed the ultimate forces of the nonlinear springs, the 
dashpots will be disengaged, as required. 
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Fig 4 - Near-Field/Far-Field Foundation Model 

VALIDATION PROBLEM 
Nonlinear foundation vibration response of a two-

dimensional strip footing supported at the surface of a uniform 
half-space and subject to frictional sliding at the base was 
analyzed in time domain with ADINA using continuum and 
distributed foundation impedance models. The results were 
then compared to evaluate the accuracy of the procedure 
presented above.  Both the rigid and flexible footing cases were 
considered. For the rigid footing case, the footing was modeled 
with no mass and assigned very stiff properties. For the flexible 
footing case, the actual footing properties, as listed in Fig. 5 
were used.  The results of the rigid footing are compared at the 
center of the footing while for the flexible footing case, the 
results at both the center and corner of the footing are 
calculated and compared.  Three load cases corresponding to 
no sliding, moderate sliding and severe sliding of the footing 
were analyzed by varying the amplitude of the applied force.  
The no-sliding case represents the linear elastic problem of the 
far-field foundation vibration response. The elasto-dynamic 
response of the above system was also analyzed in frequency 
domain using SASSI. The SASSI results, which are considered 
accurate, were used as the basis for evaluating the accuracy of 
the ADINA linear elastic continuum and distributed impedance 
models (i.e. no sliding of the footing).  The results of SASSI 
analyses were also used to develop DPFI model in terms of 
constant spring, mass and dashpot parameters, which were used 
in the ADINA distributed impedance model. The ADINA linear 
continuum model, having been verified above based on linear 
elastic analysis was then used to develop the nonlinear 
foundation response by increasing the amplitude of the applied 
load beyond the yield force of the sliding elements. The results 
of the ADINA nonlinear continuum model, which are now 
considered to be the target solution, were used as basis for 
verifying the accuracy of the ADINA nonlinear distributed 
near-field impedance model.  

It is noted that the current validation is presented for 
harmonic forced vibration of a surface-supported mat 
foundation. Extension of the methodology to transient type 
input motions and embedded foundations are feasible and will 
be addressed in future studies. 
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Model Descriptions 

ADINA Continuum Model: Figure 5 shows a two-
dimensional plane-strain finite element ADINA model of a strip 
footing supported on the surface of a uniform half-space. The 
footing is 28 m wide and is subjected to a horizontal harmonic 
force of frequency 8 Hz. The structure footing and foundation 
properties are listed in Fig. 5.  To represent the near-field 
foundation nonlinearity, a series of horizontal frictional 
elements are attached to the bottom of the footing, as shown in 
Fig. 6. These sliders are of kinematic hardening type and their 
force-displacement relationship is shown in Fig. 7.  In the 
vertical direction, the footing is assumed to be fully bonded to 
the soil (i.e. a very large vertical stiffness, Kz, is used to 
connect the footing and foundation nodes in the vertical 
direction, as shown in Fig.6). 

 
 

 

Q =  Qo e iωt 

Footing Properties: 
L = 28.0 m 
E = 1.0E9 N/m2 

Thickness = 1.0 m 
Poisson’s Ratio = 0.333 
Density = 2,950 Kg/m3 

Halfspace Properties: 
Vs = 280 m/s 
Vp = 560 m/s 
Density, ρ = 1,300 Kg/m3 

Damp. = 0.0 

112 m 
Cs = ? Gρ 
Cp = ? Mρ

Z

Y 

336 m 

Cs = (Gρ)0.5 
Cp = (Mρ)0.5 

 
 

Fig 5 - ADINA Continuum Model of Foundation 
Vibration 

 
 
 

Kz

Ky (Typical at all foundation 
interaction nodes)Kz

Ky (Typical at all foundation 
interaction nodes)

 
 

Fig 6 - ADINA Continuum Model Showing Foundation 
Interface Elements 
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Fig 7 - Constitutive Model of Nonlinear Interface 
Elements 

 
In order to minimize the reflection of elastic waves 

arriving at the model boundaries (the so-called “box effect”), 
viscous dashpots, as described above were attached to the 
lateral and bottom boundaries of the ADINA model, as shown 
in Fig. 5.  In addition, the lateral and bottom boundaries were 
placed about 3 and 2 wavelengths away from the footing, 
respectively, to provide for the effective absorption of the body 
and surface waves arriving at the model boundaries. The 
refinement of the finite element mesh was properly selected to 
satisfy the wavelength criteria for transmitting waves. 
 

SASSI SSI Model: The two-dimensional finite element 
SASSI model of the strip footing-foundation system is shown 
in Fig. 8. This model is similar to that of ADINA except that 
the foundation media is represented by a horizontally layered 
soil system over uniform half-space. The SASSI analysis is 
performed in frequency domain and because it properly 
incorporates energy transmission boundaries, it can accurately 
calculate the response of structures on semi-infinite half-space. 
As such, the SASSI results are used as basis to verify the 
ADINA linear models and to develop the DPFI model. 

 
 

5 @ 1.4 m = 7.0 m

Uniform Halfspace
Thickness varies 
with frequency

Q =  Qo e iωt

5 @ 1.4 m = 7.0 m

Uniform Halfspace
Thickness varies 
with frequency

Q =  Qo e iωt

 
 

Fig 8 - SASSI Model of Foundation Vibration 
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ADINA Distributed Impedance Model: The ADINA 
model of the above strip footing with distributed impedance 
parameters is shown in Fig. 9. This model was used to verify 
the accuracy of the procedure presented herein for developing 
nonlinear distributed foundation impedance parameters. The 
far-field components of this model consist of horizontal and 
vertical single degree-of-freedom, damped oscillators with 
constant parameters, as obtained from SASSI analyses of the 
linear SSI system. The near-field components consist of 
nonlinear horizontal springs and very stiff vertical springs 
arranged in series, as discussed above. 
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Fig 9 - ADINA Nonlinear Distributed Impedance Model 
of Foundation Vibration 

 

Comparison and Discussion of Results 
The models were analyzed for three load cases, as 

discussed below: 
 

Load Case 1 – Linear Foundation Response (Q0 = 
1,500 kN): In this case the footing is subjected to an 8-Hz 
harmonic force with amplitude slightly less than 1,500 kN. 
Because the load amplitude is less than the friction element 
yield force (Py = 1,500 kN), the footing response is expected to 
remain in elastic range, i.e. footing fully bonded to the 
foundation with no sliding at the base.  This case constitutes a 
linear elastic dynamic problem and the ADINA results can be 
directly compared with those of SASSI using far-field soil 
model. 

Figure 10 compares the horizontal time-history response at 
the center of the rigid footing, as obtained from SASSI and 
ADINA continuum and distributed impedance analyses. Figure 
11 shows the same comparisons at the center and corner of the 
footing for the flexible footing case.  As seen from Figures 10 
and 11, the steady state responses of the footing obtained from 
ADINA continuum and distributed impedance models are in 
good agreement with those of SASSI for both rigid and flexible 
footings.  The difference between SASSI and ADINA 
responses in the early times is attributed to the Fourier 
Transform procedure and complex frequency response method 
used in SASSI. This exercise verifies the adequacy of the two 
ADINA models for capturing the linear far-field foundation 
response.  In particular, it verifies that a) the ADINA 

foundation continuum model developed above can properly 
handle the wave transmission for the 8-Hz vibration frequency 
and b) the ADINA distributed impedance model properly 
incorporates the linear far-field DPFI model, as obtained from 
SASSI analyses. The ADINA linear continuum model, as 
verified above, now becomes the basis for developing the 
nonlinear foundation vibration response using inelastic near-
field friction elements to verify the accuracy of the ADINA 
nonlinear distributed near-field impedance model. 
 

Load Case 2 – Nonlinear Foundation Response 
(Q0 = 1,650 kN): In this case the force amplitude is set to Q0 
= 1,650 kN, which is slightly higher than the friction element 
yield force. The purpose of this case is to let the friction 
elements slide but not have large displacements that will 
overshadow the elastic component of the response. This case 
constitutes a linear far-field problem with moderate near-field 
foundation nonlinearity. This problem was analyzed with both 
the ADINA continuum and distributed impedance models. The 
results in terms of the horizontal displacement time histories 
and horizontal force versus displacement relationships 
computed from the two ADINA models for rigid footing case 
are compared in Figures 13 and 14, respectively.  The same 
comparisons for the flexible footing case are presented in 
Figures 15 and 16 for computed response at the center of the 
footing, and Figures 17 and 18 for computed response at the 
corner of the footing. 

The results for the rigid footing case show an excellent 
agreement between the two ADINA models both in terms of the 
horizontal displacement time history response (see Fig. 13) and 
nonlinear force-displacement relationship (see Fig. 14) of the 
footing.  For the flexible footing case, the shape of the steady 
state displacement time history responses of the footing show 
excellent agreement with peak amplitudes being within 15 
percent both at the center (Fig. 15) and corner (Fig. 17) of the 
footing for the two ADINA models. The inelastic force-
displacement behavior of the footing also shows reasonably 
good agreement between the two models for the flexible 
footing case (see Figures 16 and 18).  
 

Load Case 3 – Nonlinear Foundation Response 
(Q0 = 2,000 kN): In this case the force amplitude is set to Q0 
= 2,000 kN, which is significantly higher than the friction 
element yield force.  This load will cause large inelastic footing 
displacements that are approximately an order of magnitude 
greater than the elastic component of displacements. Similar 
comparison of the results for the ADINA continuum and 
distributed impedance models are presented in Figures 19 and 
20 for the rigid footing case; and Figures 21 and 22 for the 
footing center of the flexible footing case and Figures 23 and 
24 for the footing corner for the flexible footing case. 

Again the results for the rigid footing case show an 
excellent agreement between the two ADINA models both in 
terms of the computed horizontal displacement time history 
response and nonlinear force-displacement relationship of the 
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footing. For the flexible footing case, the agreement between 
the two ADINA models is very much the same as for Load 
Case 2, as discussed above. 

 
CONCLUSIONS 

An effective method for time-domain SSI analysis of 
foundation sliding using distributed foundation impedance 
parameters for rigid and flexible mat foundations supported at 
ground surface was presented.  It was shown that when the 
distributed, near-field nonlinear springs and far-field linear 
foundation impedance parameters are arranged in series and 
attached to the bottom of a rigid or flexible mat, it is possible to 
adequately predict the response of the nonlinear foundation 
vibration problem in time domain using this simplified analog. 
Although the method validation was done for a simple case of 
two-dimensional steady state foundation vibration problem, it 
is expected to be equally valid for three-dimensional problems 
subject to transient seismic loading. 

It is noted that the use of nonlinear near-field springs in 
conjunction with linear far-field impedance parameters require 
developing distributed impedance parameters. This is due to the 
fact that the distribution of contact stresses below the mat, in 
general, is highly non-uniform. As such, the accuracy of the 
methodology presented herein depends on the accuracy of the 
soil reaction forces and interaction displacements used to 
develop the distributed foundation impedance parameters. 
Finally, in this exercise no provision for vertical separation of 
the footing from the soil was considered (i.e. the footing is 
assumed to be fully bonded to the soil in the vertical direction).  
Any such localized de-bonding can significantly affect the 
frictional resistance of the footing and reduce the amount of 
foundation radiation damping. Although not verified at this 
time, the nonlinear distributed impedance methodology 
presented herein is expected to be able to model the above de-
bonding effects. 
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Fig 10 - Comparison of Computed Horizontal 
Displacements at Footing Center (Rigid 
Footing, Elastic Response, Q0=1500 kN) 
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Fig 11 - Comparison of Computed Horizontal 
Displacements at Footing Center (Flexible 
Footing, Elastic Response, Q0=1500 kN) 
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Fig 12 - Comparison of Computed Horizontal 
Displacements at Footing Corner (Flexible 
Footing, Elastic Response, Q0=1500 kN) 
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Fig 13 - Comparison of Computed Horizontal 

Displacements at Footing Center (Rigid 
Footing, Inelastic Response, Q0=1650 kN) 
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Fig 14 - Comparison of Force versus Displacement 
Response at Footing Center (Rigid Footing, 
Inelastic Response, Q0=1650 kN) 
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Fig 15 - Comparison of Computed Horizontal 
Displacements at Footing Center (Flexible 
Footing, Inelastic Response, Q0=1650 kN) 
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Fig 16 - Comparison of Force versus Displacement 
Response at Footing Center (Flexible 
Footing, Inelastic Response, Q0=1650 kN) 
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Fig 17 - Comparison of Computed Horizontal 
Displacements at Footing Corner (Flexible 
Footing, Inelastic Response, Q0=1650 kN) 
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Fig 18 - Comparison of Force versus Displacement 
Response at Footing Corner (Flexible 
Footing, Inelastic Response, Q0=1650 kN) 
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Fig 19 - Comparison of Computed Horizontal 
Displacements at Footing Center (Rigid 
Footing, Inelastic Response, Q0=2000 kN) 
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Fig 20 - Comparison of Force versus Displacement 

Response at Footing Center (Rigid Footing, 
Inelastic Response, Q0=2000 kN) 
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Fig 21 - Comparison of Computed Horizontal 

Displacements at Footing Center (Flexible 
Footing, Inelastic Response, Q0=2000 kN) 
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Fig 22 - Comparison of Force versus Displacement 
Response at Footing Center (Flexible 
Footing, Inelastic Response, Q0=2000 kN) 
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Fig 23 - Comparison of Computed Horizontal 
Displacements at Footing Corner (Flexible 
Footing, Inelastic Response, Q0=2000 kN) 
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Fig 24 - Comparison of Force versus Displacement 
Response at Footing Corner (Flexible 
Footing, Inelastic Response, Q0=2000 kN) 
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