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ABSTRACT 
 

In this paper we present a methodology for developing distributed parameter 
foundation impedance (DPFI) model for time-domain soil-structure interaction 
(SSI) analysis of structures supported on large flexible mat foundations at ground 
surface. This development is performed in three steps. First the foundation 
displacements and reaction forces in the x, y and z directions at each foundation 
interaction DOF are calculated from analysis of the total SSI system in frequency 
domain, and used to form the distributed foundation impedance (DFI) matrix. In 
the second step, the resulting uncoupled, frequency-dependent DFI matrix is 
linearized using a spring and a dashpot attached in parallel to a mass to constitute 
a simple damped oscillator at each interaction DOF. In the final step the DPFI 
(spring-mass-dashpot) model is implemented in time-domain analysis of the 
structure using kinematic or inertial interaction formulation. The effectiveness of 
this procedure is demonstrated by analyzing the frequency response of a lumped 
mass parameter model supported on rigid and flexible foundation mat subject to 
horizontal and vertical excitations. A comparison of the results obtained from 
direct analysis of the total SSI system in frequency domain and SSI analysis of the 
structure in time domain using DPFI model show good agreement for both cases 
of horizontal and vertical excitations. 

 
 

Introduction 
 
The desire to break a complex problem into smaller more manageable systems has led to 
development of substructuring technique for dynamic response analyses of large SSI systems 
(Kausel, et. al. 1978, and Lysmer and Tabatabaie, et. al. 1991). In substructuring method, the 
total SSI system is partitioned into two subsystems, namely the structure and foundation. The 
foundation is analyzed first, generally in frequency domain, and the foundation dynamic 
impedance and scattering properties are established at the structure/foundation interface. These 
properties are then used as boundary condition in dynamic analysis of the structure, which is 
generally performed in time domain.  This approach offers several advantages in practice. For 
example from the foundation point of view, it enables the analyst to properly a) address the 
effects of wave radiation in unbounded soil media, b) incorporate strain-compatible soil modulus 
and damping properties and c) specify input motion in the free field using deconvolution method. 
From the structural point of view, because the analysis is performed in time domain, the analyst 
can consider for example nonlinear behavior of the structure using time history dynamic 
response analysis. Nonetheless, because two different dynamic solution methods (frequency 
versus time domain) are mixed to analyze the SSI system, significant difficulties often arises 



  

when complex frequency-dependent impedance and scattering properties derived from analysis 
of the foundation in frequency domain are to be incorporated as boundary condition in time 
domain analyses of the structure (so called “handshake”).  
 
 For structures supported on rigid mats, the foundation impedance and scattering 
properties are greatly simplified, i.e. the impedance matrix is reduced to a 6x6 matrix and the 
scattering problem becomes the free field problem. This class of problems has been extensively 
studied by other researchers (Wolf 1991, 1994, 1997; and De Barros and Luco 1990 among 
others) and methods using lumped parameter foundation impedance (also referred to as constant 
spring-mass-dashpot) models have been devised to address the frequency/time-domain 
handshake. For flexible mats, development of foundation dynamic impedance is more complex 
than that of rigid mats. This is mainly due to the fact that the response of a flexible mat cannot be 
fully described by three translations and three rotations at the center of mat. When the structure 
is connected to the flexible mat, each point on the mat moves differently, and it is not possible to 
develop one lumped parameter model to represent the entire soil-flexible mat foundation system 
for each mode of vibration. A relatively large dynamic impedance matrix incorporating many 
nodes on the mat is required to accurately capture the flexible behaviour of the mat. 
 

In the following we present a methodology for developing distributed foundation 
impedance (DFI) model for a flexible mat foundation supported at the ground surface.  It 
provides for two horizontal (x and y) and a vertical (z) component at each foundation interaction 
DOF similar to soil springs attached to the bottom of the mat.  Rotational components are not 
defined in this case and the rotational behaviour of the mat is governed by the vertical 
impedance. The DFI is then linearized to develop distributed parameter foundation impedance 
(DPFI) model for implementation in time domain analyses. In this case, the scattering problem 
need not be solved as it reduces to the free field problem. 
 

Distributed Foundation Impedance Formulation 
 

The general linear dynamic equation of motion for a structure supported on a flexible mat 
at ground surface and subject to a seismic and/or dynamic input (see Fig. 1) may be written in 
frequency domain as follows. 
 

(-ω2 M + i ω C + K) . U = Q        (1) 
 
Where M, C and K are the total mass, damping and stiffness matrices, respectively, Q is the 
vector of external forces, U is the total displacement response vector, ω is circular frequency and 
i=√-1. For brevity in all later discussions all underscores for matrix or vector representation are 
dropped and the complex coefficient matrix in Eq. 1 is replaced by K = (-ω2 M + i ω C + K). 
 

The total SSI system shown in Fig. 1 may be partitioned into two substructures, namely 
the “foundation” and “structure”, as shown in Fig. 1(a) and 1(b), respectively. The structure 
consists of the structure plus flexible mat and the foundation consists of soil media. The 
interaction between the two substructures occurs at three translational DOFs of all mat nodes 
connected to the ground. For the above substructuring, the equation of motion for the structure 
and foundation may be written as shown in Eq. 2 and 3, respectively. 



  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. SSI substructuring method 
 

Kss        Ksb        Us              Qs 
                                    =        (2) 
Kbs        Kbb        Ub              Qb 

 
       Kff         Kfg        Uf              Qf 
                                          =          (3) 
       Kgf        Kgg        Ug              Qg 
 
Where “s”, “b”, “f” and “g” denote the structure, mat, interaction and ground DOFs, 
respectively. U and Q are the total displacement and boundary forces, respectively. 
 

When the structure is non-existent (i.e. Qf = 0), Eq. 3 reduces to that of the free field 
problem, as shown in Eq. 4.  
 

Kff       Kfg         U*
f               0 

                          =         (4) 
Kgf        Kgg        U*

g               Qg 
 
Where U* is now the free field ground motions. Subtracting Eq. 4 from Eq. 3 results in Eq. 5, 
 

Kff        Kfg          Uf -U*
f               Qf 

                                            =         (5) 
Kgf        Kgg         Ug -U*

g                0 
 
Condensing Ug-U*

g from Eq. 4 results in Eq. 6. 
 
Xf . Rf  =  Qf          (6) 

 
Where Rf = Uf -U*

f represents the interaction displacements, Qf is the vector of soil reaction 
forces and Xf is the subgrade dynamic impedance.  Xf is a full and complex matrix. 
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Imposing the boundary conditions between the two substructures (Ub=Uf and Qb+Qf =0) 
and Substituting Qf from Eq. 5 into Eq. 4 and rearranging the terms results in Eq. 7. 

 
  Kss           Ksb           Us                     0 

                                           =        (7) 
Kbs        Kbb+Xf        Ub                 Xf . U*

f 
 

Equation 7 represents the general response of the total SSI system shown in Fig. 1. To 
solve Eq. 7 for the structure, the subgrade dynamic impedance (Xf) and free field ground motions 
(U*

f) at all soil-mat interaction DOFs are needed. 
 

Assuming that the foundation reaction forces, Qf, and interaction displacements, Rf, are 
known, Eq. 6 may be rearranged, as follows: 
 

Xf . Rf  =  Qf  =  [qj/rj]f . Rf  =  Df . Rf       (8) 
 

Where Df =[qj/rj]f is a diagonal matrix representing the complex stiffness of foundation 
interaction DOFs; and qj and rj are the soil reaction force and displacement at interaction DOF j.   
 
Substituting Df for Xf from Eq. 8 into Eq. 7, we obtain: 
 

Kss           Ksb           Us                      0 
                                           =        (9) 
Kbs        Kbb+Df       Ub                  Df . U*

f 
 

As can be seen above, Eq. 9 is the same as Eq. 7 except that the full subgrade impedance 
matrix has now been replaced by a diagonal foundation impedance matrix consisting of 
uncoupled springs.  Equation 9 offers an advantage over Eq. 7 in that Df does not contain any 
off-diagonal terms, i.e. it can be used to develop equivalent foundation springs for time domain 
analysis. It should be noted that Eq. 9 will provide exact solution to the SSI problem, as shown in 
Fig. 1, only if the soil reaction forces, Qf, and interaction displacements, Rf, are known. Because 
Qf and Rf depend on the foundation configuration and dynamic loading, Df is referred to as 
“distributed foundation impedance (DFI)”. 
 

The DFI is calculated by first solving the total SSI system in frequency domain to obtain 
Qf = {qj}f and Rf, = {rj}f at each interaction DOF j and then substituting them in Eq. 8 to 
calculate Df. 
 

Distributed Parameter Foundation Impedance Formulation 
 
In general, the DFI matrix, Df, is complex and frequency dependent. Each element of DFI, dj, 
constitutes a complex frequency-dependent function representing dynamic impedance at an 
interaction DOF. In addition, it can be shown that the real part of the dynamic impedance is 
associated with foundation stiffness while the imaginary part represents foundation damping. 
 



  

Because frequency-dependent foundation stiffness and damping parameters can not be 
directly used in time domain analyses, they must be linearized using single (or multiple) damped 
oscillator system having constant spring (kj), dashpot (cj) and mass (mj) properties. The resulting 
system is referred to as “distributed parameter foundation impedance (DPFI)” model. 
 

In this paper we will only present results of linearization using single damped oscillator 
system, as shown in Fig. 2. The complex stiffness of a single damped oscillator with constant 
parameters (kj-cj-mj) subject to a dynamic force is illustrated in Fig. 2 and presented in Eq. 12.  
 

Kj(ω) = - ω2. mj + i ω cj + kj        (12) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Representation of foundation impedance with single damped oscillator 
 
By representing foundation impedance as a single damped oscillator, we can write: 
 

Real (dj)  = Real (Kj) = kj - ω2. mj       (13) 
Imag (dj) = Imag(Kj) = ω cj          (14) 

 
Equations 13 and 14 form the basis for estimating the single oscillator properties to 

represent frequency response behaviour of the foundation stiffness and damping. This is done by 
first setting kj to the static stiffness, i.e. kj=Real[dj(ω=0)], and then calculating mj and cj based on 
least square method of minimizing error over the frequency range of interest. The resulting mass 
component of the oscillator, mj is, often, referred to as “virtual foundation mass”. 
 

The use of single oscillator model to represent impedance functions, in general, is 
adequate for dynamic systems whose frequency response of interest is dominated by a single 
mode. For higher order impedance functions, often a system of 3 to 5 oscillators in parallel or 
series are required to adequately fit the frequency function. Multiple oscillator systems are, in 
general, more complex and may require specialized optimization methods to derive their 
properties. 
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Implementation of DPFI Model in Time Domain SSI Analysis 
 
DPFI model may be implemented in time domain SSI analysis using either kinematic or inertial 
formulation. In kinematic formulation, the oscillators are placed between the structure and 
ground interaction DOFs, and the input displacement time histories are imposed at all ground 
DOF, as shown in Fig. 3 and Eq. 15. It is noted that in the kinematic formulation, the virtual 
foundation mass, mg, should be included in the coefficient matrix with negative off-diagonal 
terms and not simply as lumped masses. By condensing the last equation out of Eq. 15, the 
inertial formulation of the equation of motion is obtained, as illustrated in Fig. 3 and Eq. 16. In 
the inertial formulation, the ground interaction DOFs are fixed and the input motion is applied as 
external forces, Fb(t) to the structure at all interaction DOFs, as shown in Eq. 16. As seen from 
Eq. 16, inertial formulation eliminates the need for using negative off-diagonal foundation mass 
in the coefficient matrix. 
 

   Ms     0       0         Us”(t)            Css     -Csb     0          Us’(t)              
   0  Mb+mg  -mg       Ub”(t)     +   -Cbs    Cbb+cg -cg        Ub’(t)     +     
   0     -mg     mg       Ug”(t)             0         -cg      cg        Ug’(t)             

 
  Kss      -Ksb     0          Us(t)                 Qs(t) 
 -Kbs    Kbb+kg  -kg        Ub(t)      =          0              (15) 
    0         -kg      kg        Ug(t)                Qg(t) 

 
 

   Ms     0         Us”(t)         Cs    -Cb        U’s(t)         Ks   -Kb        Us(t)       Qs(t) 
                                    +                    +                                  =   (16) 
   0  Mb+mg     Ub”(t)        -Cb  Cb+cg     U’b(t)       -Kb  Kb+kg     Ub(t)       Qb(t) 

 
Where Qb(t) = mg.Ug”(t)+ cg.Ug’(t)+ kg.Ug(t), and  U’’(t), U’(t) and U(t) are acceleration, 
velocity and displacement time histories.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   

Figure 3. Implementation of DPFI in time domain model 

bj 

gj 
Spring element 
at DOF j with 
kj-mj-cj (typical) 

Apply Force
time history

Qb(t)

Qs(t)
Inertial 
Formulation

 kj   -kj 
-kj    kj  

kg,j =  mj   -mj 
-mj    mj  

mg,j =  cj   -cj 
-cj    cj  

cg,j = 

bj 

gj 
Matrix element 
at DOF j (typical)

Impose 
displacement 
time history 

Ug(t) 

Qs(t) Kinematic 
Formulation



  

Validation Problem 
 

To demonstrate the accuracy of DPFI model, the frequency response of a lumped mass 
parameter model supported on a square mat foundation on uniform halfspace is examined. The 
dynamic properties of the structure, foundation mat and soil media are summarized in Fig. 4. The 
model is subjected separately to vertical and horizontal excitation by respectively applying 
vertically propagating harmonic P- and SV-waves with control motion specified at the free-field 
ground surface. 

 

 
 

Figure 4. Lumped mass parameter test model 
 

The total SSI system was first analyzed in frequency domain using SASSI (Lysmer et. al. 
1981 and MTR/SASSI 2004) to obtain the baseline solution. Both cases of rigid and flexible mat 
foundation were considered. Figure 5 and 6 show the vertical response of Node 84 from vertical 
excitation for cases of rigid and flexible mat, respectively. Similarly, the horizontal response of 
Node 84 obtained from horizontal excitation is shown in Figs. 7 and 8 for rigid and flexible mat, 
respectively. The results are presented in terms of transfer function relative to the control motion 
specified at free field ground surface. 

 
 Following this, the response of the structure was calculated in frequency domain with 

SASSI using DFI as well as DPFI model. A total of 81x3=243 DFI functions were calculated 
from direct solution of the SSI model, as described above. Each of these functions was then fit 
by response of a single damped oscillator with constant ki-mi-ci parameters within a frequency 
range of 0-6 Hertz. Other frequency ranges were also examined but did not provide significant 
improvement of the results.  The results of both analyses are compared with those of the baseline 
solution in Figs. 5 and 6 for vertical and in Figs. 7 and 8 for horizontal excitation, respectively.  
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Finally, the LMP model was analyzed in time domain with ADINA (ADINA 2004) using 
the above DPFI (ki-mi-ci) model. The time domain analyses were performed using displacement 
input time histories and step-by-step integration using Newmark integration method. In ADINA 
model 2% Rayleigh damping was anchored to frequencies of 4.2 and 18.2 Hertz for vertical 
analysis and 3.5 and 11.0 Hertz for horizontal analysis of both rigid and flexible mats, 
respectively. The results of the time-domain analysis are compared with the baseline results in 
Figs. 5, 6, 7 and 8. 
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Figure 5. Vertical transfer function at Node 84, vertical excitation, rigid mat case 
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Figure 6. Vertical transfer function at Node 84, vertical excitation, flexible mat case 
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Figure 7. Horizontal transfer function at Node 84, horizontal excitation, rigid mat case 
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Figure 8. Horizontal transfer function at Node 84, horizontal excitation, flexible mat case 
 
 

As seen from the above figures, for both rigid and flexible mat cases and both vertical 
and horizontal excitation, the response of the structure computed using DFI model are the same 
as those of the direct analysis of the total SSI system. This verifies the accuracy of the 
methodology for deriving uncoupled frequency-dependent DFI model. The above figures show 
excellent agreement between SASSI and ADINA solutions for both flexible and rigid mat cases 
using DPFI model. This verifies implementation of DPFI model in time domain analysis. The 
results using DPFI model are also within 10% of the baseline solution obtained using direct 
SASSI analyses demonstrating accuracy of the linearization scheme. 



  

Conclusions 
 
A simplified method for developing distributed parameter foundation impedance (DPFI) 

for use in time domain analysis of flexible mat foundations supported at ground surface was 
presented. It was shown from the theoretical formulations and validation problem that when the 
soil reaction forces and interaction displacements are accurately determined from analysis of the 
total SSI system in frequency domain and used to derive the distributed foundation impedance 
(DFI), the computed response of the structure on flexible mat computed from substructuring 
analysis in frequency domain exactly match those of the direct analysis of the total system.  It is 
further shown that when the above frequency-dependent DFI functions are used to derive 
distributed parameter foundation impedance with constant parameters (spring-dashpot-mass) for 
use in time-domain analysis, the computed response of the structure from time history analysis 
with e.g. ADINA agree reasonably well with those of the frequency domain analysis using 
SASSI. 
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