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ABSTRACT 
Three-dimensional seismic soil-structure interaction (SSI) 

analysis of nuclear power plants (NPP) is often performed in 
frequency domain using the computer program SASSI [1].  
This enables the analyst to properly a) address the effects of 
wave radiation in an unbounded soil media, b) incorporate 
strain-compatible soil shear modulus and damping properties 
and c) specify input motion in the free field using de-
convolution method and/or spatially variable ground motions. 
For large, complex structural systems with multi-million 
degrees of freedom (DOF) and large foundation impedance 
matrices associated with deeply embedded foundations, the 
conventional sub-structuring analysis approach employed in 
SASSI often results in a coefficient matrix that is too large to 
solve with currently available computer resources. To address 
this problem, the method of component mode synthesis (CMS) 
is employed in the SSI analysis.  This involves partitioning the 
structure into several interconnected components, calculating 
the reduced-order model of each component, and then 
assembling the reduced-order component models into a global 
model of the total SSI system. This technique has been 
implemented in MTR/SASSI® [2] utilizing the super-element 
capability. After the component boundary and foundation 
motions of the synthesized SSI model are determined, these 
motions are substituted back into the structural component 
model  to compute the response of the structure. 

This paper presents the formulation of component mode 
models, and their implementation into the global SSI model. To 
check out this procedure, an example of seismic SSI analysis of 
a simplified NPP model on flexible basemat subject to 
horizontal and vertical excitations is considered. The total SSI 
system is first analyzed with SASSI using the conventional 
approach to compute the baseline (target) solution.  The 

structure is then partitioned from the basemat and analyzed 
separately using the ANSYS® [3] program to compute the 
component mode properties that are used to form the boundary 
super-elements. These super-elements are input into the 
foundation/soil model and analyzed by MTR/SASSI® to 
calculate the basemat response. The response of the flexible 
basemat is checked against the baseline solution. In the final 
step, the foundation basemat response that includes the SSI 
effects is imposed onto the structural component to calculate 
the response of the structure.  Comparison of the responses 
show excellent agreement between the baseline solution and 
those obtained using CMS method. 

INTRODUCTION 
Component mode synthesis has been in use for several 

decades, in particular in the automotive and aerospace industry. 
The principle of this method is to represent a large, complex 
structural system as an assemblage of several components that 
are represented by their modal properties.  These modal 
properties include fixed-interface normal (natural) vibration 
modes, rigid-body modes, interface constrained modes among 
others, which fully describe the displacement behavior of a 
component.  

Component mode synthesis involves three basic steps: 1) 
division of the structure into components, 2) definition of sets 
of component modes, and 3) coupling of the component modes 
to form a reduced order system model. The primary use of the 
CMS model presented herein is to solve the dynamic response 
of a very large finite element SSI model with multi-million 
degrees of freedom. CMS methods have been developed for 
both the damped and undamped systems. Nevertheless, the 
derivation of damping matrices is only briefly discussed herein. 
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METHODOLOGY 
Figure 1(a) illustrates a typical finite element soil-structure 

interaction model. Using sub-structuring method, this model 
may be partitioned into two components, namely the structure 
and foundation, as shown in Fig 1(b & c) and (d), respectively.  
The foundation is generally solved first to determine the 
foundation dynamic impedance and scattering properties at the 
soil/structure interface. These properties are then used as 
boundary conditions to solve the dynamic response of the 
structure. The general dynamic equation of motion based on the 
above partitioning for a seismic problem may be written as 
shown in Eq. 1. 

 
Kii        Kib           ui                  0 
   =           (1) 
Kbi    Kbb+Xf        ub             Xf . uf

SC 
 
Where: 
 

K = -ω2 M + iω C + K 
 

 K is complex-valued, dynamic stiffness matrix 
 M, C and K  are mass, damping and static stiffness 

matrices 
 Xf  is complex-valued, foundation dynamic impedance 
 u is displacement response vector 
 uf

SC is foundation scattered displacement vector 
 “i” and “f” denote super-structure and soil/structure 

interface degrees of freedom (DOF) 
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Fig 1 – Illustration of SSI Model Partitioning 
 

In applying the CMS method to the sub-structuring 
formulation in Eq. 1, it is noted that the structure may be 
further broken up to more than one component with common 
interfaces between these components and even more than one 
interface with the foundation component. However, the 
foundation is always considered as a single component 
represented by its dynamic impedance, Xf, and scattered 
motions, uf

SC.  
 

Component Modes 
Hurty [4, 5] provided the first comprehensive development 

of a finite element-based CMS method based on the redundant 
interface modes, rigid-body modes and fixed-interface natural 
modes among others. Craig and Bampton [6] simplified Hurty’s 
method by combining the rigid-body and redundant interface 
modes into one set of constrained interface modes. Since then 
there has been significant developments and applications in this 
area and the reader is referred to several articles cited herein [7, 
8, 9, 10, 11]. In the present application of CMS, the original 
Hurty’s constrained-mode method modified by Craig and 
Bampton has been employed. 

The equation of motion for a typical undamped structure 
component may be written as follows: 

 
Mc uc˝ + Kc uc = Fc                                                 (2) 

  
Where the “c” denotes a particular component and Fc is the 
force vector acting on the component interface due to its 
connection to adjacent components. In CMS method, the 
component’s displacement response vector, u, is transformed to 
generalized coordinate system as shown below: 
 

uc = Γc pc                                                                (3) 
 
Where the component mode matrix Γc is a coordinate 
transformation matrix that includes the normal modes of free 
vibration (i.e. eigenvectors) and constraint modes (including 
rigid body modes). Equation 3 together with the equation of 
motion in generalized coordinates as shown below forms the 
component modal model. 
 

mc pc˝ + kc pc = fc                                             (4) 
 
Where: 
 
        mc = ΓcT . Mc . Γc,    kc = ΓcT . Kc . Γc,    fc = ΓcT . Fc    (5) 

 
Normal Modes: Component fixed-interface normal 

modes are eigenvectors that are obtained by restraining all 
boundary coordinates and solving the following eigenvalue 
problem: 

 
[Kii – ωj

2 Mii] {φi}j = 0,     j=1, 2, …. Ni                       (6) 
 
The complete set of Ni fixed-interface normal modes is 

labeled Φn and assembled according to the partitioning of Eq. 
1, as shown below: 
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            Φin 
Φn =                                                                               (7) 
            0bn 
 
Φin

T . Mii . Φin = I,  Φin
T . Kii . Φin = Λnn = diag (ωj

2)     (8) 
 
Since the model reduction is one of the major objectives in 

CMS, the normal mode set is usually reduced to a smaller kept 
set of Φk, as shown in Eq. 9. The deleted normal modes are 
generally above certain frequency cut-off and do not 
significantly contribute to the system response. Therefore, 

 
            Φik 
Φk =                                                                               (9) 
            0bk 
 
Constrained Modes: A constrained mode is defined as 

the static deformation of a structure component when a unit 
displacement is applied to one coordinate of a specified set of 
constrained coordinates while the remaining coordinates of that 
set are restrained, and the remaining DOF’s of the structure are 
force-free. Following the above notation, we can write: 

 
    Kii    Kib        Ψib            0ib 
                                  =                                                (10)   
    Kbi   Kbb        Ibb            Rbb 

 
Where: 

            Ψib           -Kii
-1. Kib  

Ψc =              =                                                             (11) 
            Ibb                  Ibb 

 
The constrained mode matrix, Ψc, is a very useful CMS 

quantity because of the ease of enforcing inter-component 
compatibility when these constrained modes are employed. It 
can be shown that the above constrained modes are stiffness-
orthogonal to all of the fixed-interface normal modes, i.e. 

 
Φn

T . K . Ψc = 0                                      (12) 

Component Stiffness and Mass Matrices 
The component displacement transformation employs a 

combination of fixed-interface normal modes (Eq. 7) and 
interface constrained modes (Eq. 9) as shown below: 

 
            ui   c       Φik     Ψib    c    pk   c 
uc =             =                                                               (13) 
            ub            0        I            pb 
 
Where k is the number of selected fixed-interface normal 

modes. With component fixed-interface normal modes 
normalized according to Eq. 8, the reduced component stiffness 
and mass matrices may be written as follows: 

 
 

               I         Mkb    c                       Λkk     0      c 
Mc =                               ,      Kc =                                  (14)  
             Mbk      Mbb                             0       Kbb 
 
The zeros in the bk and kb partitions of the Kc matrix are 

due to the orthogonality conditions. From Eq. 13, it can be seen 
that ub = pb. Therefore, in terms of component generalized 
coordinates, the interface displacement compatibility can be 
satisfied through “direct stiffness assembly” method of the 
component matrices and no additional requirements for 
component coupling are needed at the interface. 

As an example the assembly of the mass and stiffness 
matrices for two components 1 and 2 that share a common 
interface b with selected fixed-base natural modes m and l, 
respectively, can be written as follows: 

 
                    I            M1

mb           0 
M1-2 =      M1

bm    M1
bb+M2

bb    M2
bl                            (15) 

                    0           M2
lb            I 

 
                  Λ1

mm           0             0 
K1-2 =           0       K1

bb+K2
bb       0                              (16) 

                     0              0           Λ2
ll 

 
Therefore, component modes based on the fixed-interface 

normal modes and interface constrained modes may be viewed 
essentially as super-elements.  All internal displacements of the 
components are retained as generalized coordinates 
independent of other components; thus, greatly facilitating 
component coupling.  Simple and straightforward procedures 
for formulating the component interface matrices by this 
method are readily available in some commercial finite element 
codes such as ANSYS®. 

SSI Formulation of Component Modes 
Once the component mass and stiffness matrices are 

determined for each component, they are incorporated in the 
SSI equation of motion in accordance with Eq.1; i.e. 

 
 Kc

kk        Kc
kb        Kc

kf         pk                  0 
 Kc

bk        Kc
bb          0            ub     =           0              (17) 

        Kc
fk           0       Kc

ff+Xf       uf              Xf . uf
SC 

 
Where: 

Kc = -ω2 Mc + iω Cc + Kc                                     (18) 
 

The damping matrix Cc can be defined in one of two ways. 
Assuming constant hysteretic damping, the structural 
component damping is given by: 
 

ω Cc = 2 β Kc                                                        (19) 
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This type of damping results in complex-valued dynamic 
stiffness matrix, which can be conveniently incorporated in 
equation 18; i.e, 

 
Kc = -ω2 Mc + (1+2βi) Kc                                     (20) 

 
Alternatively, the structural damping may be introduced as 

modal damping in the component generalized coordinates.  
Because dynamic SSI analysis is generally performed in 
frequency domain using complex frequency response method, 
the former definition of damping will be utilized herein.  

In Eq. 17, “k” represents all the generalized coordinates 
internal to the structural components, “b” represents the 
interface DOF’s between adjacent structural components and 
“f” represents the interface DOF’s between structural 
components and foundation. Eq. 17 assumes that only one 
structural component has interface with foundation. But this is 
only presented for brevity. In general, any number of structural 
components can be connected to the foundation interface and 
the details of coupling are handled through “direct stiffness 
assembly” method. 

Because component generalized coordinates k are internal 
to each component and independent from other components, 
the matrix Kc

kk is a diagonal matrix.  In addition, by selecting 
limited number of significant modes k which adequately 
represents very large and complex structural components, the 
size of the remaining partitions of matrix Kc can also be kept 
relatively small. These will result in significant savings in 
solving Eq. 17. 

Seismic SSI Analysis Using Component Modes 
The CMS procedure described above is implemented in 

SSI analysis using the computer program MTR/SASSI®. Figure 
2 shows a flow diagram for CMS-based SSI analysis by 
SASSI.  

 
 

 
 
Fig 2 – Flow Diagram of CMS-Based SSI Analysis 

 

The analysis steps are described below: 
 
1. Partition the structure into its components. In 

general, the physical characteristics of the structure 
are used to select suitable components. The 
components should also be defined so as to 
minimize the number of interfaces between them. 
This will significantly reduce computer run time. 

2. Construct the normalized displacement modes for 
each component that includes the constrained 
interface and normal modes. The internal 
displacements of components are represented in 
generalized coordinates with selected number of 
modes while the boundary displacements are 
represented in global DOF’s for ease of coupling of 
components through standard finite element direct 
stiffness assembly. 

3. Compute the component mass and stiffness 
matrices following the CMS formulations in Eq. 
14. These matrices are also referred to as super-
element matrices. 

4. Compute component damping matrices; e.g. using 
the procedure presented in Eq. 19. 

5. Incorporate super-element mass, stiffness and 
damping matrices in the foundation model 
represented by foundation dynamic impedance and 
scattered motions and solve the equation of motion 
to determine the component boundary and 
foundation dynamic responses. 

6. Using the component boundary and foundation 
dynamic responses, calculate the response of each 
component. 

 
Steps 1 through 3 can be readily carried out in commercial 

computer programs such as ANSYS®. The computer program 
MTR/SASSI® is used to carry out steps 4, 5 and 6.  

Lumped Mass Parameter SSI Model Example 
In order to check out the procedure outlined above, the 

frequency response of a lumped mass parameter model with 
mass eccentricity supported on a square mat foundation on 
uniform halfspace is examined (see Fig. 3). The dynamic 
properties of the structure, foundation basemat and soil media 
are summarized below. The model is subjected separately to 
vertical and horizontal excitation by respectively applying 
vertically propagating harmonic P- and SV-waves with control 
motion specified at the free-field ground surface. 

 
 
 
 

Total SSI System 

Structure Model (TD) Foundation + Soil Model 
(FD)

Modal Properties 

Super Element 

CMS 

ANSYS 

Foundation 
ResponseSASSI 

Structure Model (FD)

Structural 
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Beam Properties: 
E = 2.4*1012 N/m2 
Poisson’s Ratio = 0.3 
Density = 0. 
Section Area = 0.15 m2 
Ixx = Iyy = 0.50 m4 
Damping Ratio = 0.02 
Mat Properties: 
L = W = 28.0 m 
E = 1.0*1012 N/m2 
Thickness = 1.0 m 
Poisson’s Ratio = 0.333 
Density = 2,950 Kg/m3 
Halfspace Properties: 
Vs = 600 m/s 
Vp = 2,000 m/s 
Density = 1,300 Kg/m3 
Damping Ratio = 0. 

 

 
Fig 3 – Lumped Mass Parameter SSI Model 
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Fig 4 – CMS-Based SSI Analysis Steps 

 
The total SSI system was first analyzed in frequency 

domain using SASSI to obtain the baseline solution. Two cases 
of rigid and flexible basemats were analyzed. Figure 5 and 6 
show the x and y transfer function (TF) response of rigid and 

flexible foundation basemat (Node 82) from x-excitation, 
respectively. Similar TF results at top mass node (Node 84) are 
shown in Figs. 7 and 8, respectively. For the vertical excitation, 
the foundation and top mass node responses in the x any y 
directions are shown in Figs. 9 and 10, and Figs. 11 and 12, 
respectively.  The TF responses in the y direction due to z-
excitation are the same as those of the x-direction due to 
symmetry and, therefore, are not shown. 

Following the calculation of baseline responses above, the 
structural model was partitioned from the total system and 
modeled as CMS component. The component modal mass and 
stiffness matrices were then calculated from ANSYS® and 
incorporated into the foundation model as super-element. 
Figure 4 shows the CMS partitioning scheme. The combined 
super-element structural component and foundation model 
were then analyzed by SASSI to compute the foundation 
response (Node 82). The foundation responses were then back-
substituted into the structural component and analyzed by 
SASSI to calculate the structure response.  
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Fig 5 – X-Response Due to X-Input, Node 82 
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Fig 6 – Y-Response Due to X-Input, Node 82 
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Fig 7 – X-Response Due to X-Input, Node 84 
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Fig 8 – Y-Response Due to X-Input, Node 84 
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Fig 9 – X-Response Due to Z-Input, Node 82 
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Fig 10 – Z-Response Due to Z-Input, Node 82 
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Fig 11 – X-Response Due to Z-Input, Node 84 
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Fig 12 – Z-Response Due to Z-Input, Node 84 
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The TF results of the SSI analyses using component modes 
are compared with the baseline (target) results in Figs. 5 
through 12 for both the rigid and flexible foundation basemats. 
As seen from these figures, there is excellent agreement 
between the one-step analysis results and those obtained 
utilizing CMS method. 

CONCLUSIONS 
Method of component mode synthesis (CMS) of large 

structural systems based on fixed-interface natural modes and 
interface constrained modes (including rigid body modes) 
properties of the components were presented. The method was 
then applied to seismic SSI formulation using sub-structuring 
method. It was shown that by suitable selection of structural 
components and reduced number of kept-normal modes, the 
size of the global reduced SSI model to be solved can be made 
small and manageable. Once the foundation and component 
interface responses are calculated, they can be back-substituted 
in each component model to determine the final response of the 
structure.  The accuracy of the procedure was checked out 
using an example of a lumped parameter model with mass 
eccentricity supported on rigid and flexible basemats on 
uniform soil media. The SSI response of this model calculated 
using one-step approach by SASSI and CMS-based SSI 
approach by ANSYS® and SASSI shows excellent agreement.  
Because the CMS method is well established and widely used, 
it is expected that very large and complex SSI systems with 
multi-million degrees of freedom in the structure can be 
analyzed utilizing this method. 
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